Описание протокола SNMP (Simple Network Management Protocol). Основы работы с SNMP По какому порту работает snmp

Для успешного администрирования сети необходимо знать состояние каждого ее элемента с возможностью изменять параметры его функционирования. Обычно сеть состоит из устройств различных производителей, и управлять ею было бы нелегкой задачей, если бы каждое из сетевых устройств понимало только свою систему команд.

Поэтому возникла необходимость в создании единого языка управления сетевыми ресурсами, который бы понимали все устройства, и который, в силу этого, использовался бы всеми пакетами управления сетью для взаимодействия с конкретными устройствами.

Подобным языком стал протокол прикладного уровня SNMP - Simpleew Network Management Protocol. Разработанный для систем, ориентированных под операционную систему UNIX, он стал фактически общепринятым стандартом сетевых систем управления и поддерживается подавляющим большинством производителей сетевого оборудования.

В силу названия протокола - Простой Протокол Сетевого Управления - основной задачей при его разработке было добиться максимальной простоты его реализации. В результате возник протокол, включающий минимальный набор команд, однако позволяющий выполнять практически весь спектр задач управления сетевыми устройствами - от получения информации о местонахождении конкретного устройства, до возможности производить его тестирование.

Сегодня SNMP является самым популярным протоколом управления различными коммерческими, университетскими и исследовательскими объединенными сетями. Деятельность по стандартизации, связанная с SNMP, продолжается по мере того, как поставщики разрабатывают и выпускают современные прикладные программы управления, базирующиеся на SNMP. SNMP - относительно простой протокол, однако набор его характеристик является достаточно мощным для решения трудных проблем, возникающих при управлении гетерогенных сетей.

Применение SNMP

  • Получение информации о состоянии сетевого оборудования
  • Локализация неполадок в сети
  • Удаленное управление узлами сети
  • Сбор статистической информации о состоянии сети
  • Возможно применение протокола SNMP в областях не связанных с сетевыми технологиями:
    • Проекты по использованию SNMP в системах управления светофорами
    • Производства имеющие сеть измерительных приборов разбросанных географически, нуждающиеся в мониторинге состояния и показаний этих приборов

Главные достоинства протокола SNMP:

  • простота;
  • доступность;
  • независимость от производителей.

Основной концепцией протокола является то, что вся необходимая для управления устройством информация хранится на самом устройстве - будь то сервер, модем или маршрутизатор - в так называемой Административной Информационной Базе (MIB - Management Information Base - RFC 1213).

MIB представляет из себя набор переменных, характеризующих состояние объекта управления. Эти переменные могут отражать такие параметры, как количество пакетов, обработанных устройством, состояние его интерфейсов, время функционирования устройства и т.п.

Для того, чтобы проконтролировать работу некоторого устройства сети, необходимо просто получить доступ к его MIB, которая постоянно обновляется самим устройством, и проанализировать значения некоторых переменных.

Модель SNMP состоит из четырех компонентов:

  • управляемых узлов;
  • станций управления (менеджеров);
  • управляющей информации;
  • протокола управления

Агентами в SNMP являются программные модули, которые работают в управляемых устройствах. Агенты собирают информацию об управляемых устройствах, в которых они работают, и делают эту информацию доступной для систем управления сетями (network management systems - NMS) с помощью протокола SNMP.

Управляемое устройство может быть узлом любого типа, находящимся в какой-нибудь сети: это хосты, служебные устройства связи, принтеры, роутеры, мосты и концентраторы. Т.к. некоторые из этих систем могут иметь ограниченные способности управления программным обеспечением (например, они могут иметь центральные процессоры с относительно малым быстродействием или ограниченный объем памяти), программное обеспечение управления должно сделать допущение о наименьшем общем знаменателе.

Множество объектов, которыми управляет SNMP, составляет базу управляющей информации (Management Information Base, MIB). Для удобства эти объекты объединены в десять групп, каждая из которых представляет собой дочерний для mib-2 узел в дереве имен объектов. Изначально база управляющей информации содержала восемь групп. Спецификация MIB-2 добавила еще две группы и исключила одну прежнюю. Производители могут определять собственные объекты.

Группы объектов в Internet MIB-2

Количество объектов

Описание

7

Имя, местонахождение и описание оборудования

23

Сетевые интерфейсы и трафик через них

3

Трансляция адресов

42

Статистика по IP-пакетам

26

Статистика по полученным сообщениям ICMP

19

Алгоритмы, параметры и статистика TCP

6

Статистика трафика UDP

20

Статистика трафика для Exterior Gateway Protocol

0

Зарезервирована для специфичных MIB

29

Статистика о трафике SNMP

Протокол SNMP служит основой многих систем управления, хотя имеет несколько принципиальных недостатков, которые перечислены ниже.

  • Несмотря на свое название, SNMP оказался далеко не простым для реализации протоколом ввиду сложности правил кодирования информации. Кроме того, SNMP мог бы быть более эффективным, чем он есть. В частности, его сообщения содержат зачастую ненужную информацию, например номер версии SNMP. Из-за принятого в SNMP способа описания переменных сообщения содержат чрезмерно большие дескрипторы данных. Все это ведет к раздуванию объема сообщений. Изначально SNMP предназначался для относительно простых сетей, так что станции управления не могли обмениваться информацией друг с другом. Наконец, самым существенным недостатком SNMP была слабая защита. Многие из этих недостатков — но не все — исправлены новых версиях SNMP.
  • Отсутствие средств взаимной аутентификации агентов и менеджеров. Единственным средством, которое можно было бы отнести к средствам аутентификации, является использование в сообщениях так называемой «строки сообщества» - «community string». Эта строка передается по сети в открытой форме в сообщении SNMP и служит основой для деления агентов и менеджеров на «сообщества», так что агент взаимодействует только с теми менеджерами, которые указывают в поле community string ту же символьную строку, что и строка, хранящаяся в памяти агента. Это, безусловно, не способ аутентификации, а способ структурирования агентов и менеджеров. Версия SNMP v.2 должна была ликвидировать этот недостаток, но в результате разногласий между разработчиками стандарта новые средства аутентификации хотя и появились в этой версии, но как необязательные.
  • Работа через ненадежный протокол UDP (а именно так работает подавляющее большинство реализации агентов SNMP) приводит к потерям аварийных сообщений (сообщений trap) от агентов к менеджерам, что может привести к некачественному управлению. Исправление ситуации путем перехода на надежный транспортный протокол с установлением соединений чревато потерей связи с огромным количеством встроенных агентов SNMP, имеющихся в установленном в сетях оборудовании. (Протокол CMIP изначально работает поверх надежного транспорта стека OSI и этим недостатком не страдает.) Разработчики платформ управления стараются преодолеть эти недостатки. Например, в платформе HP 0V Telecom DM TMN, являющейся платформой для разработки многоуровневых систем управления в соответствии со стандартами TMN и ISO, работает новая реализация SNMP, организующая надежный обмен сообщениями между агентами и менеджерами за счет самостоятельной организации повторных передач сообщений SNMP при их потерях.

Введение

Одной из проблем большинства сегодняшних сетей - быстрорастущих, больших по количеству узлов и зачастую широко раскинутых географически - является управление и получение информации о состоянии всей сети или отдельных ее участков.

Целью данной курсовой работы является изучение протокола SNMP, предназначенного для удаленного управления и сбора информации с удаленных систем. К настоящему времени данный протокол достаточно хорошо развит и используется во многих областях сетевых технологий.

SNMP Framework

Simple Network Management Protocol (SNMP) - протокол, предназначенный для сетевого управления удаленных систем. С его помощью можно управлять и получать информацию о состоянии сетевого оборудования или сетевого протокола, реализованного на удаленной системе.

SNMP является не просто протоколом для обмена управляющей информацией между объектами сети. Чаще всего под SNMP понимают Internet-Standard Management Framework или SNMP Framework , т.е. совокупность стандартов описывающих модели и средства использующиеся при сетевом управлении.

SNMP Framework состоит из нескольких частей:

    Язык описания информации

    Описание протокола

При развитии стандарта от версии к версии, обновляется содержание этих модулей, но основные принципы строения SNMP остаются неизменны.

Причиной модульного строения было желание упростить предполагаемый в скором времени переход от протокола SNMP к протоколам ISO. По этому были созданы протоколо-независимые SMI и MIB. В результате, планы по переходу к OSI не осуществились, но модульное строение SNMP Framework все же сыграло свою роль упростив переход от SNMPv1 к SNMPv2, и от SNMPv2 к SNMPv3.

База данных управляемых элементов

Для управления тем или иным сетевым протоколом или устройством с помощью SNMP, выделяются основные объекты этого протокола или устройства, которые могут предоставлять (для чтения или для изменения) какую-либо информацию о протоколе или устройстве. Все эти объекты являются управляемыми элементами этого протокола или оборудования. Управляемые элементы рассматриваются как объекты виртуального хранилища информации, называемого Management Information Base (MIB). В MIB все эти объекты рассматриваются как переменные, содержащие информацию о представляемом ими объекте. Например, для протокола IP, существует переменная ipDefaultTTL, которая содержит значение по умолчанию для поля TTL в заголовке датаграммы протокола IP, или переменная ipInHdrErrors, предоставляющая информацию о том, какое количество ip-пакетов было отсеено по причине ошибок в их заголовке. Наборы этих переменных определяются в MIB-модулях.

Вообще, MIB имеет структуру дерева, каждый узел которого является переменной MIB. Для нужд сетевого управления сети Internet выделена отдельное поддерево, в котором могут быть определены все требуемые элементы. В одном из поддеревьев этого дерева содержатся все управляемые элементы сети Internet. Раньше вся эта ветка определялась одним MIB-модулем.

Позже, после публикации второй версии этого MIB-модуля, был принят другой подход к созданию базы управляемых элементов. До этого существовал единственный комитет, работающий над документом, описывающим Стандартный MIB для Internet. Теперь же принято разделение на группы, каждая из которых специализируется в одной из областей сетевых технологий. Небольшие MIB-модули разработанные каждой группой, составляют единый Internet MIB. Т.о. теперь поддерево сетевого управления Internet описывается не единой спецификацией, входящей в состав SNMP, а набором отдельных документов, выпускаемых отдельно от Стандартов SNMP.

Язык описания информации

Вся База Управляемых Элементов описывается с помощью упрощенного подмножества стандартного языка OSI, Abstract Syntax Notation One (ASN.1). Это подмножество описывается в документе называемом Structure of Management Information, по этому и весь язык описания информации для SNMP называется SMI. По мимо языка определения данных этот документ описывает также и древовидную структуру MIB и все стандартные поддеревья, которые должны присутствовать во всех реализациях MIB.

Протокол

Эта часть Стандартной Модели описывает протокол, посредством которого происходит обмен информацией между управляемым объектом (называемым агентом ) и управляющей системой (называемой менеджером ). PDU (protocol data unit) протокола SNMP содержит операцию, выполняемую протоколом и список переменных и их значений, участвующих в данной транзакции.

Во всех версиях SNMP определены следующие операции: get, get-next, get-response, set-request. Более поздние версии определяют еще несколько операций. Этот модуль также содержит рекомендации о том, какой транспортных протокол может использоваться для доставки сообщений SNMP. Все версии SNMP, используемые на сегодняшний день содержат рекомендации об использовании транспортных протоколов без установки соединения (UDP).

Безопасность и администрирование

Система сетевого управления SNMP предоставляет достаточно большие возможности для непосредственного управления удаленными системами. По средствам SNMP можно получить доступ к достаточно критическим параметрам системы. Таким образом, проблемы безопасности должны учитываться на каждом этапе проектирования SNMP. В то же время безопасность любого открытого протокола всегда является очень спорным вопросом.

В первой версии SNMP проблемы безопасности практически не учитывались. Этот недостаток SNMPv1 предполагался уже на стадии разработки, т.к. на тот момент основной задачей был скорейший выпуск стандартной модели сетевого управления, в которой нуждалось интернет-сообщество, а обсуждение спорных вопросов безопасности еще на долго затянуло бы разработку стандарта.

Именно тогда проблемы безопасности и администрирования были вынесены в отдельный блок общей модели, рассмотрение которого было оставлено на будущие версии SNMP.

Развитие SNMP

В настоящее время существует три версии SNMP Framework. В следующих трех частях будут кратко описаны изменения произошедшие в каждой версии SNMP и ссылки на документы описывающие компоненты каждой версии SNMP.

SNMPv1

Первоначальным Internet-Standard Management Framework стал SNMPv1, история его развития описана в первой части. Стандарт SNMPv1 содержится в следующих документах:

    SNMPv2c - Развитие SNMPv2p, кроме системы безопасности. Содержит дополнение к протоколу и типам данных, определенным ранее. Использует community string-based систему безопасности из первой версии SNMPv1. (RFC-1901 , RFC-1905 , RFC-1906).

    SNMPv2u - Отличается от SNMPv2c только подсистемой безопасности. В этой модификации используется user-based подход. (RFC-1905 , RFC-1906 , RFC-1909 , and RFC-1910)

    SNMPv2* - сочетает в себе лучшие стороны SNMPv2p и SNMPv2u. (Эта спецификация никогда не издавалась как официальный документ RFC)

    Существовали также SNMPv1+, SNMPv1.5, SNMP++

Наибольшую поддержку IETF получил SNMPv2c, не использующий никаких нововведений в области безопасности. Он стал наиболее распространенным и используемым в интернет-сообществе. Описание этой вариации SNMPv2 Framework содержится в следующих документах:

На данный момент большинство из вышеперечисленных документов заменено их более новыми версиями и издано со статусом Стандарта. Документы, представляющие SNMPv2c на сегодняшний день, приведены в таблице в заключительной части данной.

SNMPv3

Итак, проект SNMPv2 не выполнил поставленных перед ним целей. Не было разработано стандартоного средства сетевого управления, удовлетворявшего интернет-сообщество в плане безопасности. Теперь, все эти проблемы должна была решить рабочая группа SNMPv3 (SNMPv3 WG), созданная IETF. Ей предстояло разработать единый стандарт для нового поколения SNMP. Единственной критической неразрешенной проблемой оставалась система безопасности и администрирования, по этому все силы рабочей группы были брошены на разрешение этой проблемы.

В руках SNMPv3 WG имелись предыдущие разработки и результаты работ других проектов, посвященных безопасности в SNMP:

От рабочей группы SNMPv3 требовалось найти точки соприкосновения всех концепций безопасности и администрирования представленных ранее. Также в ее задачи входило:

    соответствие требованиям широкого спектра существующих сетевых окружений, имеющих различные потребности в управлении.

    простота перехода от предыдущих версий SNMP к использованию SNMPv3.

    простота установки и сопровождения

Части нового стандарта, не связанные с проблемами безопасности, такие как SMI, MIB, протокол, были заимствованы из SNMPv2. Таким образом, многие документы из спецификации SNMPv2 Framework получили статус стандарта и перешли в SNMPv3 Framework.

Спецификация SNMPv3 Management Framework была разделена на множество частей, каждая из которых представлена отдельным документом. Таким образом, в любой документ могли быть внесены поправки и обновления не затрагивая при этом другие элементы Модели.

В конечном счете, все документы спецификации SNMPv3 могут быть разделены на те же категории, на которые делились документы всех предыдущих версий SNMP:

    Язык описания информации

    База данных управляемых элементов

    Описание протокола

    Решение проблем безопасности и администрирования

Первые три части взяты из SNMPv2, а последняя часть является результатом основной работы проекта SNMPv3 и других проектов, разработавших концепции безопасности SNMP.

SNMPv3 WG был представлен следующий набор документов, описывающих третью версию стандартную модель сетевого управления:

Рисунок 1. Средний входящий трафик на машине iota.cs.prv

Заключение

Итак, описание любой версии SNMP Framework разделено на четыре части. Их взаимодействие определяется следующим образом.

Доступ к управляемым объектам осуществляется через виртуальное хранилище информации, называемое Management Information Base (MIB). В качестве протокола для доступа к объектам MIB используется Simple Network Management Protocol (SNMP). Объекты в MIB описываются с помощью механизмов определяемых спецификацией Structure of Management Information (SMI), предоставляющей свой язык определения информации. При любом взаимодействии объектов SNMP Framework учитывается система безопасности и администрирования принятая в данной версии SNMP.

Следующая таблица представляет свод всех документов, определяющих все три версии SNMP. Все документы разделены на вышеупомянутые группы. Также почти все версии SNMP предоставляют некоторое количество докуметов информационного характера. В них описаны общие концепции данной версии Стандарта или его совместимость с предыдущими версиями.

Как уже говорилось ранее, ситуация с описанием MIB несколько изменилась после выхода первой версии SNMP. Следующие версии уже не включали в себя единый стандартный MIB, описывающий все, требуемые для управления, объекты сети. Последние две версии Стандарта включают в себя только модуль MIB, содержащий описание переменных для работы с объектами протокола SNMP, а также переменные, описывающие состояние системы, на котором расположен агент SNMP. Остальное содержимое документа RFC-1213 , описывавшего MIB-II первой версии SNMPv1 разделено на несколько частей, каждая из которых содержится в отдельном документе. Теперь совокупность этих модулей образует MIB-II. В свою очередь MIB-II это модуль описывающий сетевые объекты используемые в Internet.

После перехода к модульному описанию MIB, База Данных Управляемых элементов несколько отделилась от общей модели SNMP. Естественно, MIB все еще остается частью SNMP, но теперь весь Internet MIB не описывается спецификацией SNMP, а документы, описывающие отдельные элементы Internet MIB, выходят отдельно.

Основным языком описания модулей MIB на сегодняшний день является SMIv2, который является рекомендованным стандартом IETF. Более того, IETF требует, чтобы все новые MIB модули были описаны с помощью SMIv2. Одновременно с этим все еще используется SMIv1, который также является стандартом, но без статуса рекомендации. Стандарт SMIv1 не был объявлен устаревшим, т.к. существует большое количество документов опирающихся на спецификацию SMIv1 и многие коммерческие организации еще долгое время после выпуска стандарта SMIv2 пользовались SMIv1. По этому объявление SMIv1 устаревшим потребовало бы изменения и пересмотра очень большого количества спецификаций. Тем более, что одновременное использование SMIv1 и SMIv2 не вносит особых проблем в систему сетевого управления, т.к. SMIv2 совместим со SMIv1. SNMPv2 и SNMPv3, работающие со SMIv2 могут корректно обрабатывать модули описанные с помощью SMI. SNMPv1 воспринимает только SMIv1 и не может полноценно работать с модулями описанными с помощью SMIv2, т.к. SMIv2 содержит новые типы данных. Проблемы совместной работы нескольких версий SNMP, в том числе и проблемы SMIv1/SMIv2 рассматриваются в документах RFC-2576 и RFC-3584 .

Таким образом, на сегодняшний день SMIv2 является рекомендованным стандартом IETF, а SMI является стандартом без статуса рекомендации.

На данный момент существует большое количество (около 10000) MIB-модулей, описывающих объекты для управления почти всеми известными сетевыми протоколами и устройствами. Информацию обо всех MIB-модулях можно найти на сайте http://www.mibdepot.com .

SNMP работает на прикладном уровне TCP/IP (седьмой уровень модели OSI). Агент SNMP получает запросы по UDP-порту 161. Менеджер может посылать запросы с любого доступного порта источника на порт агента. Ответ агента будет отправлен назад на порт источника на менеджере. Менеджер получает уведомления (Traps и InformRequests) по порту 162. Агент может генерировать уведомления с любого доступного порта. При использовании TLS или DTLS запросы получаются по порту 10161, а ловушки отправляются на порт 10162.

В SNMPv1 указано пять основных протокольных единиц обмена (protocol data units - PDU). Еще две PDU, GetBulkRequest и InformRequest, были введены в SNMPv2 и перенесены в SNMPv3.

Все PDU протокола SNMP построены следующим образом:

Ниже перечислены семь протокольных единиц обмена SNMP:

GetRequest

Запрос от менеджера к объекту для получения значения переменной или списка переменных. Требуемые переменные указываются в поле variable bindings (раздел поля values при этом не используется). Получение значений указанной переменной должно быть выполнено агентом как Атомарная операция . Менеджеру будет возвращен Response (ответ) с текущими значениями.

SetRequest

Запрос от менеджера к объекту для изменения переменной или списка переменных. Связанные переменные указываются в теле запроса. Изменения всех указанных переменных должны быть выполнены агентом как атомарная операция. Менеджеру будет возвращен Response с (текущими) новыми значениями переменных.

GetNextRequest

Запрос от менеджера к объекту для обнаружения доступных переменных и их значений. Менеджеру будет возвращен Response со связанными переменными для переменной, которая является следующей в базе MIB в лексиграфическом порядке. Обход всей базы MIB агента может быть произведен итерационным использованием GetNextRequest, начиная с OID 0. Строки таблицы могут быть прочтены, если указать в запросе OID-ы колонок в связанных переменных.

GetBulkRequest

Улучшенная версия GetNextRequest. Запрос от менеджера к объекту для многочисленных итераций GetNextRequest. Менеджеру будет возвращен Response с несколькими связанными переменными, обойденными начиная со связанной переменной (переменных) в запросе. Специфичные для PDU поля non-repeaters и max-repetitions используются для контроля за поведением ответа. GetBulkRequest был введен в SNMPv2.

Response

Возвращает связанные переменные и значения от агента менеджеру для GetRequest, SetRequest, GetNextRequest, GetBulkRequest и InformRequest. Уведомления об ошибках обеспечиваются полями статуса ошибки и индекса ошибки. Хотя эта единица использовалась как ответ и на get-, и на set-запросы, она была названа GetResponse в SNMPv1.

Trap

Асинхронное уведомление от агента - менеджеру. Включает в себя текущее значение sysUpTime, OID, определяющий тип trap (ловушки), и необязательные связанные переменные. Адресация получателя для ловушек определяется с помощью переменных trap-конфигурации в базе MIB. Формат trap-сообщения был изменен в SNMPv2 и PDU переименовали в SNMPv2-Trap.

InformRequest

Асинхронное уведомление от менеджера - менеджеру или от агента - менеджеру. Уведомления от менеджера - менеджеру были возможны уже в SNMPv1 (с помощью Trap), но SNMP обычно работает на протоколе UDP, в котором доставка сообщений не гарантирована и не сообщается о потерянных пакетах. InformRequest исправляет это отправлением назад подтверждения о получении. Получатель отвечает Response-ом, повторяющим всю информацию из InformRequest. Этот PDU был введен в SNMPv2.

Разработка и использование

Версия 1

SNMP, версия 1 (SNMPv1) - изначальная реализация протокола SNMP. SNMPv1 работает с такими протоколами, как UDP, IP, CLNS, DDP и IPX. SNMPv1 широко используется и де-факто является протоколом сетевого управления в Интернет-сообществе.

Первые RFC для SNMP, сейчас известные как SNMPv1, появились в 1988г:

  • RFC 1065
  • RFC 1066
  • RFC 1067

Эти протоколы были пересмотрены в следующих RFC:

  • RFC 1155 - Структура и идентификация управляющей информации в сетях на основе стека протоколов TCP/IP
  • RFC 1156 - База управляющей информации для сетевого управления в сетях на основе стека протоколов TCP/IP
  • RFC 1157 - Простой протокол сетевого управления
  • Настройка SNMP на Cisco as53xx

Enter configuration commands, one per line. End with CNTL/Z.

Список № 1: Разрешить доступ из сети 10.26.95.224/27 или 255.255.255.224

as5350(config)#access-list 1 permit 10.26.95.224 0.0.0.31

Список № 2: Разрешить доступ с IP 10.26.95.254 и 10.26.95.251

as5350(config)#access-list 2 permit host 10.26.95.254

as5350(config)#access-list 2 permit host 10.26.95.251

Настройка snmp-server для чтения и записи со строкой сообщества xxas5300xx. SNMP -доступ разрешен только для access-list 2 (для 2-х IP, для остальных IP неявно запрещен)

as5350(config)#snmp-server community xxas5300xx rw 2

Разрешаем reload циски по SNMP.

as5350(config)#snmp-server system-shutdown

Дмитрий Ганьжа

Типичная сеть состоит из множества устройств различных производителей. Управлять такой сетью возможно только при наличии стандартного, не зависящего от производителя протокола управления. Самым популярным стандартным протоколом управления в современных сетях является простой протокол управления сетью (Simple Network Manage-ment Protocol, SNMP). Широкое распространение он получил в силу своей гибкости и расширяемости - SNMP позволяет описывать объекты для самых разных устройств. Ниже мы рассмотрим основные компоненты SNMP с указанием отличий первой версии протокола от второй.

МОДЕЛЬ SNMP

Модель SNMP состоит из четырех компонентов:

  • управляемых узлов;
  • станций управления (менеджеров);
  • управляющей информации;
  • протокола управления.
Управляемыми узлами могут быть компьютеры, маршрутизаторы, коммутаторы, принтеры или любые другие устройства, способные сообщать информацию о своем состоянии. Чтобы им можно было управлять с помощью SNMP, узел должен выполнять управляющий процесс SNMP, иными словами, иметь агента SNMP. Каждый агент ведет собственную локальную базу данных о состоянии устройства и истории событий.

Управление сетью осуществляется со станций управления, которые представляют собой компьютеры общего назначения со специальным программным обеспечением для управления. Станции управления выполняют один или более процессов, взаимодействующих с агентами по сети. При такой схеме вся сложность (и вся интеллектуальность) сосредоточена на станциях управления, чтобы агенты были как можно более просты и чтобы они потребляли как можно меньшие ресурсы устройств, на которых выполняются.

Спрашивать, например, у маршрутизатора, сколько пакетов было потеряно, бессмысленно, если он не ведет их учет или не понимает запроса. Поэтому SNMP самым тщательным образом описывает, какую информацию агент должен собирать и в каком формате ее следует предоставлять. Таким образом, каждое устройство поддерживает несколько переменных с описанием своего состояния. Все возможные переменные объединены в такую структуру, как база управляющей информации.

Станции управления взаимодействуют с агентами с помощью протокола SNMP. Он позволяет станции запрашивать значения локальных переменных агента и при необходимости изменять их.

Однако иногда в сети могут происходить нежелательные события. Управляемые узлы могут сломаться, линии связи - выйти из строя и т. п. Как только агент замечает какое-либо значительное событие, он немедленно сообщает о нем всем станциям из своего конфигурационного списка. Это сообщение называется прерыванием SNMP. Агент лишь сообщает о событии, а все подробности станция управления должна выяснять самостоятельно. Из-за ненадежности коммуникаций между станцией и агентами (получение сообщений не подтверждается) каждая станция периодически проводит опрос управляемых узлов для выявления необычных событий. Такая модель опроса через длительные интервалы времени с немедленным опросом при получении прерывания называется инициируемым прерываниями опросом.

СТРУКТУРА УПРАВЛЯЮЩЕЙ ИНФОРМАЦИИ

Структура управляющей информации (Structure of Management Information, SMI) определяет допустимые в базе управляющей информации типы данных и способы их представления. Кроме того, она определяет иерархическую структуру имен, чтобы управляемые объекты имели уникальные однозначные имена. SMI представляет своего рода надподмножество ASN.1 - она использует часть типов данных этого стандарта и вводит несколько своих типов данных. (АSN - абстрактное описание синтаксиса - представляет собой стандартный язык описания объектов, принятый в OSI. Как и многие другие протоколы OSI, он сложен, громоздок и неэффективен.)

Для того чтобы агенты и менеджеры могли управлять объектами в сети со множеством устройств и протоколов разных поставщиков, объекты должны быть описаны, а также стандартным образом закодированы для передачи по сети. Термин "объекты" относится к переменным, описывающим состояние устройства. Он несколько сбивает с толку, так как это далеко не те же объекты, что и в объектно-ориентированных системах, в частности они имеют состояния, но не имеют методов (помимо чтения и записи значений объектов). Однако этот термин используется в официальных стандартах.

Объекты базы управляющей информации обычно имеют шесть атрибутов. Как правило, это имя, например ifInErrors или tcpAttemptFails; идентификатор объекта в точечно-десятичной нотации вида 1.3.6.1.2.1.2.2.1.1.4; поле синтаксиса для выбора одного из нескольких возможных типов данных - Integer, IPAddress или Counter; поле метода доступа - "недоступен", "только чтение", "чтение-запись" и "только запись"; поле статуса - "обязательный", "необязательный" или "вышедший из употребления", а также текстовое описание объекта.

SMI задает правила описания объектов. Все эти абстрактные правила и зарезервированные слова позволяют получить машиночитаемые спецификации, понятные человеку. Объекты MIB имеют статичную природу. Они компилируются из текстов файлов с описанием в двоичную форму, которую агенты и управляющие процессы и загружают. Используя SMI, производитель может написать собственное определение объекта управления (например, PacketsContainingWordSpam), пропустить текст через стандартный компилятор MIB и создать таким образом исполнимый код. Этот код можно затем установить на агенты с надлежащим аппаратным и программным обеспечением для подсчета количества содержащих слово spam пакетов.

БАЗА УПРАВЛЯЮЩЕЙ ИНФОРМАЦИИ

Множество объектов, которыми управляет SNMP, составляет базу управляющей информации (Management Information Base, MIB). Для удобства эти объекты объединены в десять групп, каждая из которых представляет собой дочерний для mib-2 узел в дереве имен объектов (см. Рисунок 1). Изначально база управляющей информации содержала восемь групп. Спецификация MIB-2 добавила еще две группы и исключила одну прежнюю. Производители могут определять собственные объекты. Информация по всем десяти группам сведена в Таблицу 1.

Группа System позволяет определить, как называется устройство, кем оно произведено, какое программное и аппаратное обеспечение оно содержит, где находится и какие функции выполняет. Кроме того, она предоставляет информацию о том, когда последний раз производилась загрузка и каковы имя и координаты ответственного лица. Зная эту информацию, администратор из центрального офиса может, например, без труда установить конфигурацию устройства в удаленном офисе.

Группа Interface служит для сбора статистики о работе сетевых адаптеров, в том числе о количестве переданных и полученных пакетов и байтов, о числе широковещательных пакетов и текущем размере выходной очереди.

Присутствовавшая в MIB-1 группа АТ предоставляла данные о соответствии адресов (например, MAC- и IP-адресов). В SNMPv2 эта информация была перемещена в базы управляющей информации для конкретных протоколов.

Группа IP описывает трафик через узел. Она изобилует счетчиками для подсчета числа отброшенных по каждой из причин кадров (например, кадр был отброшен, потому что его адресат неизвестен). Кроме того, она позволяет получить данные о фрагментации и сборке дейтаграмм. Как нетрудно понять, эта группа особенно полезна для получения статистики о работе маршрутизатора.

Группа ICMP собирает данные о сообщениях об ошибках в IP. Она имеет счетчики для подсчета количества зафиксированных сообщений каждого возможного типа.

Группа TCP служит для учета числа открытых соединений, количества переданных и полученных сегментов и различного рода ошибок.

Группа UDP позволяет фиксировать число переданных и полученных дейтаграмм, а также количество дейтаграмм, потерянных из-за того, что порт неизвестен, или по другим причинам.

Группа EGP используется маршрутизаторами, поддерживающими Exterior Gate-way Protocol. Она позволяет подсчитывать число полученных из внешней сети кадров, а также сколько из них было передано правильно, а сколько отброшено и т. п.

Группа Transmission служит родительским узлом для специфичных баз управляющей информации. Например, сюда может быть помещена группа для сбора статистики об Ethernet. Цель включения пустой группы в MIB-2 состоит исключительно в резервировании идентификатора для подобных целей.

Последняя группа - группа SNMP - предназначена для сбора статистики о функционировании самого протокола SNMP: сколько сообщений было послано, что это за сообщения и т.п.

ПРОТОКОЛ SNMP

Собственно SNMP представляет собой протокол по типу запрос-ответ, которыми сетевые станции управления и агенты обмениваются между собой. Первая версия протокола SNMP предусматривает всего пять различных сообщений. Три из них может посылать менеджер агенту, а два других - агент менеджеру.

Если в сети ничего необычного не происходит, то SNMP используется менеджером для отправки агенту запроса с просьбой передать запрошенную информацию или с приказом изменить свое состояние указанным образом. Агент посылает в ответ требуемую информацию или подтверждает изменение своего состояния. Однако агент может передать сообщение об ошибке, например "нет такой переменной". В чрезвычайных же обстоятельствах, в частности при превышении заданного порога, агент отправляет менеджеру прерывание. Данные передаются с использованием синтаксиса ASN.1.

Менеджер агенту может послать следующие три сообщения: GetRequest, GetNextRequest и SetRequest. Первые два служат для запроса у агента значений конкретных переменных. Первое из них содержит имя переменной в явном виде. Второе запрашивает значение следующей переменной в алфавитном порядке. Третье позволяет менеджеру изменять значения переменных, если определение объекта это позволяет.

Агент может отправлять два различных сообщения: одно из них - GetResponse - служит для ответа (и подтверждения) на запрос от менеджера, а второе - Trap - посылается при обнаружении агентом предопределенного чрезвычайного события.

Протоколом SNMPv2 вводится еще два типа сообщений. GetBulkRequest позволяет запросить целый массив переменных, например таблицу, а InformRequest - одному менеджеру сообщить другому, какими переменными он управляет.

Все типы сообщений сведены в Таблице 2.

НИЖЕЛЕЖАЩИЕ ТРАНСПОРТНЫЕ ПРОТОКОЛЫ

SNMP предназначался в первую очередь для управления сетями на базе протоколов Internet. Как протокол прикладного уровня он может, однако, использовать в качестве транспортного любой другой протокол, помимо UDP и IP. Например, он может выполняться поверх IPX, отображаться напрямую в кадры Ethernet, инкапсулироваться в ячейки ATM и т. п.

Протокол SNMP разрабатывался в расчете на то, что обмен сообщениями между агентами и менеджерами будет происходить без установления соединения. В результате SNMP не предоставляет гарантии, что сообщения будут доставлены по назначению. Однако на практике большинство сообщений достигает адресата, а те, что теряются по пути, могут быть переданы повторно. Исходя из этого - и, естественно, ориентации SNMP на протоколы Internet, основным транспортом для SNMP является UDP.

Благодаря своей простоте и транспорту без установления соединения SNMP оказывается весьма эффективным протоколом. И агенты, и менеджеры могут работать независимо друг от друга. Таким образом, менеджер будет продолжать работать, даже если удаленный агент окажется недоступен. После возобновления функционирования агент отправит менеджеру прерывание, дабы известить его о своей работоспособности.

Обмен сообщениями при использовании в качестве транспорта протокола UDP осуществляется следующим образом. Агент следит за поступлением дейтаграмм на порт 161. Ответы посылаются запрашивающей сетевой станции управления на динамически назначаемый порт, однако многие агенты используют тот же номер порта - 161. Асинхронные прерывания станция управления принимает на порт 162.

Максимальная допустимая длина сообщений SNMP ограничивается мак-симальным размером сообщения UDP, т. е. 65 507 байт. Однако спецификация SNMP предусматривает, что все агенты и менеджеры должны принимать пакеты лишь длиной до 484 байт, поэтому некоторые из них могут не уметь обрабатывать пакеты длиной свыше 484 байт.

UDP более подходит для транспорта SNMP, нежели TCP, в частности, когда сеть сталкивается с проблемами и пакеты передаются каждый раз по новым маршрутам, т. е. когда управление наиболее необходимо. Кроме того, он предъявляет меньшие требования к сетевым ресурсам, нежели TCP, т. е. накладные расходы на управление оказываются меньше. Однако в результате задача обнаружения потерянных и ошибочных пакетов возлагается непосредственно на менеджеров и агентов.

ЗАЩИТА В SNMP

Одно из самых слабых (и критикуемых) мест SNMP - реализация защиты. Так, станция управления может не только узнать практически все о находящихся в сфере ее контроля узлах, но и остановить их. Поэтому агенты должны быть уверены, что полученный ими запрос действительно исходит от станции управления.

В SNMPv1 простейшая идентификация отправителя осуществляется посредством включения в сообщения имени группы (community name), причем имя передается открытым текстом. После проверки имени группы агент или менеджер проверяет наличие у отправителя с данным адресом прав на выполнение запрошенной операции. Таким образом, проверка прав осуществляется на основании имени группы и адреса отправителя.

В SNMPv2 сделана попытка укрепить защиту SNMP за счет использования современных криптографических методов, в частности DES. Однако это еще более усложнило протокол. Кроме того, в такой реализации SNMPv2 оказался обратно несовместим с SNMPv1.

ЛОЖКА ДЕГТЯ?

Несмотря на свое название, SNMP оказался далеко не простым для реализации протоколом ввиду сложности правил кодирования информации. Кроме того, SNMP мог бы быть более эффективным, чем он есть. В частности, его сообщения содержат зачастую ненужную информацию, например номер версии SNMP. Из-за принятого в SNMP способа описания переменных сообщения содержат чрезмерно большие дескрипторы данных. Все это ведет к раздуванию объема сообщений. Изначально SNMP предназначался для относительно простых сетей, так что станции управления не могли обмениваться информацией друг с другом. Наконец, самым существенным недостатком SNMP была (и остается) слабая защита. Многие из этих недостатков - но не все - исправлены во второй версии SNMP (SNMPv2).

Однако SNMP продолжает совершенствоваться, и уже готовится третья версия этого протокола.

Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу:

Данная статья посвящена протоколу SNMP (Simple Network Management Protocol) - одному из протоколов модели OSI, который практически не был затронут в документации просторов RU-нета. Автор попытался заполнить этот вакуум, предоставив читателю почву для размышлений и самосовершенствования, касательно этого, возможно нового для Вас, вопроса. Этот документ не претендует на звание "документации для разработчика", а просто отражает желание автора, насколько это возможно, осветить аспекты работы с данным протоколом, показать его слабые места, уязвимости в системе "security", цели преследованные создателями и объяснить его предназначение.

Предназначение

Протокол SNMP был разработан с целью проверки функционирования сетевых маршрутизаторов и мостов. Впоследствии сфера действия протокола охватила и другие сетевые устройства, такие как хабы, шлюзы, терминальные сервера, LAN Manager сервера, машины под управлением Windows NT и т.д. Кроме того, протокол допускает возможность внесения изменений в функционирование указанных устройств.

Теория

Основными взаимодействующими лицами протокола являются агенты и системы управления. Если рассматривать эти два понятия на языке "клиент-сервер", то роль сервера выполняют агенты, то есть те самые устройства, для опроса состояния которых и был разработан рассматриваемый нами протокол. Соответственно, роль клиентов отводится системам управления - сетевым приложениям, необходимым для сбора информации о функционировании агентов. Помимо этих двух субъектов в модели протокола можно выделить также еще два: управляющую информацию и сам протокол обмена данными.

"Для чего вообще нужно производить опрос оборудования?" - спросите Вы. Постараюсь пролить свет на этот вопрос. Иногда в процессе функционирования сети возникает необходимость определить определенные параметры некоторого устройства, такие как, например, размер MTU, количество принятых пакетов, открытые порты, установленную на машине операционную систему и ее версию, узнать включена ли опция форвардинга на машине и многое другое. Для осуществления этого как нельзя лучше подходят SNMP клиенты.

Помимо сказанного выше рассматриваемый протокол обладает еще одной весьма важной особенностью, а именно возможностью модифицировать данные на агентах. Безусловно, было бы глупостью разрешить модификацию абсолютно любого параметра, но,не смотря на это, и количество тех параметров, для которых допускается операция записи просто пугает. С первого взгляда это полностью опровергает всю теорию сетевой безопасности, но, если углубиться в вопрос, то становится ясно, что не все так запущено, как кажется с первого взгляда. "Волков бояться - в лес не ходить". Ведь при небольших усилиях администратора сети можно свести риск успешного завершения атаки к минимуму. Но этот аспект мы обсудим позже.

Остановимся на том, какую же все-таки информацию может почерпнуть система управления из недр SNMP. Вся информация об объектах системы-агента подержится в так называемой MIB (management information base) - базе управляющей информации, другими словами MIB представляет собой совокупность объектов, доступных для операций записи-чтения для каждого конкретного клиента, в зависимости от структуры и предназначения самого клиента. Ведь не имеет смысла спрашивать у терминального сервера количество отброшенных пакетов, так как эти данные не имеют никакого отношения к его работе, так как и информация об администраторе для маршрутизатора. Потому управляющая система должна точно представлять себе, что и у кого запрашивать. На данный момент существует четыре базы MIB:

  1. Internet MIB - база данных объектов для обеспечения диагностики ошибок и конфигураций. Включает в себя 171 объект (в том числе и объекты MIB I).
  2. LAN manager MIB - база из 90 объектов - пароли, сессии, пользователи, общие ресурсы.
  3. WINS MIB - база объектов, необходимых для функционирования WINS сервера (WINSMIB.DLL).
  4. DHCP MIB - база объектов, необходимых для функционирования DHCP сервера (DHCPMIB.DLL), служащего для динамического выделения IP адресов в сети.

Все имена MIB имеют иерархическую структуру. Существует десять корневых алиасов: 1) System - данная группа MIB II содержит в себе семь объектов, каждый из которых служит для хранения информации о системе (версия ОС, время работы и т.д.). 2) Interfaces - содержит 23 объекта, необходимых для ведения статистики сетевых интерфейсов агентов (количество интерфейсов, размер MTU, скорость передачи, физические адреса и т.д.) . 3) AT (3 объекта) - отвечают за трансляцию адресов. Более не используется. Была включена в MIB I. Примером использования объектов AT может послужить простая ARP таблица (более подробно об ARP протоколе можно почитать в статье "Нестандартное использование протокола ARP", которую можно найти на сайте в разделе "Articles") соответствия физических (MAC) адресов сетевых карт IP адресам машин. В SNMP v2 эта информация была перенесена в MIB для соответствующих протоколов. 4) IP (42 объекта) - данные о проходящих IP пакетах (количество запросов, ответов, отброшенных пакетов). 5) ICMP (26 объектов) - информация о контрольных сообщениях (входящие/исходящие сообщения, ошибки и т.д.). 6) TCP (19) - все, что касается одноименного транспортного протокола (алгоритмы, константы, соединения, открытые порты и т.п.). 7) UDP (6) - аналогично, только для UDP протокола (входящие/исходящие датаграммы, порты, ошибки). 8) EGP (20) - данные о трафике Exterior Gateway Protocol (используется маршрутизаторами, объекты хранят информацию о принятых/отосланных/отброшенных кардах). 9) Transmission - зарезервирована для специфических MIB. 10) SNMP (29) - статистика по SNMP - входящие/исходящие пакеты, ограничения пакетов по размеру, ошибки, данные об обработанных запросах и многое другое.

Каждый из них представим в виде дерева, растущего вниз, (система до боли напоминает организацию DNS). Например, к адресу администратора мы можем обратиться посредством такого пути: system.sysContact.0 , ко времени работы системы system.sysUpTime.0 , к описанию системы (версия, ядро и другая информация об ОС) : system.sysDescr.0 . С другой стороны те же данные могут задаваться и в точечной нотации. Так system.sysUpTime.0 соответствует значение 1.3.0, так как system имеет индекс "1" в группах MIB II, а sysUpTime - 3 в иерархии группы system. Ноль в конце пути говорит о скалярном типе хранимых данных. Ссылку на полный список (256 объектов MIB II) Вы можете найти в конце статьи в разделе "Приложение". В процессе работы символьные имена объектов не используются, то есть если менеджер запрашивает у агента содержимое параметра system.sysDescr.0, то в строке запроса ссылка на объект будет преобразована в "1.1.0", а не будет передана "как есть". Далее мы рассмотрим BULK-запрос и тогда станет ясно, почему это столь важно. На этом мы завершим обзор структуры MIB II и перейдем непосредственно к описанию взаимодействия менеджеров (систем управления) и агентов.

В SNMP клиент взаимодействует с сервером по принципу запрос-ответ. Сам по себе агент способен инициировать только оно действие, называемое ловушкой прерыванием (в некоторой литературе "trap" - ловушка). Помимо этого, все действия агентов сводятся к ответам на запросы, посылаемые менеджерами. Менеджеры же имеют гораздо больший "простор для творчества", они в состоянии осуществлять четыре вида запросов:

  • GetRequest - запрос у агента информации об одной переменной.
  • GetNextRequest - дает агенту указание выдать данные о следующей (в иерархии) переменной.
  • GetBulkRequest - запрос за получение массива данных. При получении такового, агент проверяет типы данных в запросе на соответствие данным из своей таблицы и цикле заполняет структуру значениями параметров: for(repeatCount = 1; repeatCount

    Теперь представьте себе запрос менеджера на получение списка из сотни значений переменных, посланный в символьном виде, и сравните размер такового с размером аналогичного запроса в точечной нотации. Думаю, Вы понимаете, к чему привела бы ситуация, если бы символьные имена не преобразовывались вышеуказанным образом.

    • SetRequest - указание установить определенное значение переменой.

    Кроме этого менеждеры могут обмениваться друг с другом информацией о своей локальной MIB. Такой тип запросов носит название InformRequest.

    Приведу значения числовых констант для всех видов запросов:

    #define SNMP_MSG_GET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x0) #define SNMP_MSG_GETNEXT (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x1) #define SNMP_MSG_RESPONSE (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x2) #define SNMP_MSG_SET (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x3) /* PDU для SNMPv1 */ #define SNMP_MSG_TRAP (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x4) /* PDU для SNMPv2 */ #define SNMP_MSG_GETBULK (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x5) #define SNMP_MSG_INFORM (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x6) #define SNMP_MSG_TRAP2 (ASN_CONTEXT | ASN_CONSTRUCTOR | 0x7)

    Вот тут то мы сталкиваемся с еще одной интересной деталью, как видите для ловушке есть 2 числовые константы. На самом деле существует 2 основные версии протокола SNMP (v1 & v2) и самое важное то, что они не являются совместимыми (на самом деле версий значительно больше -SNMP v2{p | c | u} etc, только все эти модификации довольно незначительны, так как, например, введение поддержки md5 и т.п.).

    SNMP - протокол контроля и диагностики, в связи с чем, он рассчитан на ситуации, когда нарушается целостность маршрутов, кроме того в такой ситуации требуется как можно менее требовательный с аппаратуре транспортный протокол, потому выбор был сделан в сторону UDP.

    Но это не значит, что никакой другой протокол не может переносить пакеты SNMP. Таковым может быть IPX протокол (например, в сетях NetWare) , также в виде транспорта могут выступать карды Ethernet, ячейки ATM. Отличительной особенностью рассматриваемого протокола есть то, что передача данных осуществляется без установки соединения.

    Допустим менеджер послал несколько пакетов разным агентам, как же системе управления в дальнейшем определить какой из приходящих пакетов касается 1ого и 2ого агента? Для этого каждому пакету приписывается определенный ID - числовое значение. Когда агент получает запрос от менеджера, он генерирует ответ и вставляет в пакет значение ID , полученное им из запроса (не модифицирую его). Одним из ключевых понятий в SNMP является понятие group (группа). Процедура авторизации менеджера представляет собой простую проверку на принадлежность его к определенной группе, из списка, находящегося у агента. Если агент не находит группы менеджера в своем списке, их дальнейшее взаимодействие невозможно. До этого мы несколько раз сталкивались с первой и второй версией SNMP. Обратим внимание на отличие между ними.

    Первым делом заметим, что в SNMP v2 включена поддержка шифрования трафика, для чего, в зависимости от реализации, используются алгоритмы DES, MD5 .

    Это ведет к тому что при передаче данных наиболее важные данные недоступны для извлечения сниффингом, в том числе и информация о группах сети. Все это привело в увеличению самого трафика и усложнению структуры пакета. Сам по себе, на данный момент, v2 практически нигде не используется. Машины под управлением Windows NT используют SNMP v1. Таким образом мы медленно переходим к, пожалуй, самой интересной части статьи, а именно к проблемам Security. Об этом давайте и поговорим...

    Практика и безопасность

    В наше время вопросы сетевой безопасности приобретают особое значение, особенно когда речь идет о протоколах передачи данных, тем более в корпоративных сетях. Даже после поверхностного знакомства с SNMP v1/v2 становится понятно, что разработчики протокола думали об этом в последнюю очередь или же их жестко поджимали сроки сдачи проекта %-).

    Создается впечатление что протокол рассчитан на работу в среде так называемых "доверенных хостов". Представим себе некую виртуальную личность. Человека, точнее некий IP адрес, обладатель которого имеет намерение получить выгоду, либо же просто насолить администратору путем нарушения работы некой сети. Станем на место этой особы. Рассмотрение этого вопроса сведем к двум пунктам:

    a) мы находимся вне "враждебной сети". Каким же образом мы можем совершить свое черное дело? В первую очередь предполагаем что мы знаем адрес шлюза сети. Согласно RFC, соединение системы управления с агентом происходит по 161-ому порту (UDP). Вспомним о том что для удачной работы необходимо знание группы. Тут злоумышленнику на помощь приходит то, что зачастую администраторы оставляют значения (имена) групп, выставленные по умолчанию, а по умолчанию для SNMP существует две группы - "private" и "public". В случае если администратор не предусмотрел подобного развития событий, недоброжелатель может доставить ему массу неприятностей. Как известно, SNMP протокол является частью FingerPrintering. При желании, благодаря группе system MIB II, есть возможность узнать довольно большой объем информации о системе. Чего хотя бы стоит read-only параметр sysDescr. Ведь зная точно версию программного обеспечения, есть шанс, используя средства для соответствующей ОС получить полный контроль над системой. Я не зря упомянул атрибут read-only этого параметра. Ведь не порывшись в исходниках snmpd (в случае UNIX подобной ОС), этот параметр изменить нельзя, то есть агент добросовестно выдаст злоумышленнику все необходимые для него данные. А ведь не надо забывать о том, что реализации агентов под Windows поставляются без исходных кодов, а знание операционной системы - 50% успеха атаки. Кроме того, вспомним про то, что множество параметров имеют атрибут rw (read-write), и среди таких параметров - форвардинг! Представьте себе последствия установки его в режим "notForwarding(2)". К примеру в Linux реализации ПО для SNMP под название ucd-snmp есть возможность удаленного запуска скриптов на сервера, путем посылки соответствующего запроса. Думаю, всем понятно к чему могут привести "недоработки администратора".

    б) злоумышленник находится на локальной машине. В таком случае вероятность увольнения админа резко возрастает. Ведь нахождение в одном сегменте сети дает возможность простым сниффингом отловить названия групп, а с ними и множество системной информации. Этого случая также касается все сказанное в пункте (а).

    Перейдем к "практическим занятиям". Что же может на понадобиться. В первую очередь программное обеспечение. Его можно достать на . Примеры я буду приводить для ОС Линукс, но синтаксис команд аналогичен Windows ПО.

    Установка пакета стандартна:

    Gunzip udc-snmp-3.5.3.tar.gz tar -xvf udc-snmp-3.5.3.tar cd udc-snmp-3.5.3 ./configure make make install

    Запуск демона (агента)

    После инсталяции Вам доступны программы:

    Snmpget snmpset snmpgetnext snmpwalk snmpbulkwalk snmpcheck snmptest snmpdelta snmpnetstat snmpstatus snmptable snmptrap snmptranstat и демон snmptrapd

    Посмотрим, как выглядят описанные выше операции на практике. Запрос GetRequest реализует одноименная программа snmpget Для получения необходимой информации выполним следующую команду:

    Root@darkstar:~# snmpget 10.0.0.2 public system.sysDescr.0

    На что сервер добросовестно сообщит нам:

    System.sysDescr.0 = Hardware: x86 Family 6 Model 5 Stepping 0 AT/AT COMPATIBLE - Software: Windows NT Version 4.0 (Build Number: 1381 Uniprocessor Free)

    (не правда ли - довольно содержательно), либо же